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Since the discovery of cyathin A by Ayer and co-workers in the
early 1970s,a variety of structurally related diterpenoids have been
isolated from both fungal and marine sources. Archetypal examples
include allocyathin B2 erinacine A3 sarcodonin G,and cyan-
thiwigin U® (1, Figure 1). These diterpenoids all possess a reduced
cycloheptaglindene ring system punctuated by carbons at a variety
of oxidation states and two angular substituents. A diverse array two-directional T
of biological activities ranging from cytotoxicity to inhibition of tandem ROM-RCM

4
Mycobacterium tuberculosiand nerve-growth factor stimulation
has also been recorded for members of the class. As a result of 0
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these properties, there has been substantial interest in the synthesis PivO\/\/\)’\xc
problems posed by the cyathins and related terp&aes these X, = chiral auxiliary
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the Snidef and Torf groups, ¢-)-allocyathin B by Nakad& and Figure 2. Overview of synthesis strategy.
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Figure 1. Cyathane and cyanthiwigin class terpenes. TfOH (2 equiv),—78 °C, 70%; (3) CAN, aqueous MeCN, 82%; (4) (a)
LAH, 99%; (b) (COCI), DMSO, EtN, 84%.

Our synthesis is based on the design shown in Figure 2. We
envisioned removal of the peripheral substituents to provide bis-
enone2. It was expected that in the forward direction differentiation
of the enones could be achieved by a combination of steric and ~CHO 1
electronic factors. Bis-enonzwould arise from application of a -
variant of our previously developed tandem metathesis of bicyclo- 12 CHO
[2.2.2]octenes 14in a two-directional fashion to compoui@d The
bicyclo[2.2.2.]Joctene would be ultimately be synthesized from
the product of an asymmetric Dietg\lder reaction between 1,4-

Scheme 2 2@

a Conditions: (1) (a) vinylmagnesium bromide, Cg@b) Dess-Martin
periodinane; (2) 20 mol 98, ethylene, PhMe, 43% (three steps).

dimethylcyclohexadiene and an enone of general stru&ure ester were reduced with LAH (99%). Subsequent Swern oxidation
The synthesis commences with the cross-metathesis of Palomo’sof both primary alcohols provided dialdehyd@ in 84% yield.

camphor-derived enongwith alkene? in the presence of 5 mol Treatment of dialdehyd#&2 with vinylmagnesium bromide and

% of Grubbs catalys8® to yield the Diels-Alder precurso in reoxidation with DessMartin periodinane provided bis-enofe

93% yield and with>99:1 E:Z selectivity (Scheme 1). Exposure and set the stage for the key two-directional tandem RGREM

of a mixture of this enone and 1,4-dimethylcyclohexadiene to 2 sequence (Scheme 2). Exposure Dfto catalyst8, under an
equiv of TfOH at—78 °C provided bicyclo[2.2.2]octen&0 as a atmosphere of ethylene, provided tricy@en 43% vyield for the
single diastereoisomer in 70% yiel#ll” After oxidative removal three steps from dialdehyde? and established a concise route to
of the auxiliary with CAN (L0— 11, 82%)8 the acid and pivalate  the carbocyclic skeleton of the cyanthiwigins.
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stereochemistry of cyanthiwigin U to be as shown in Scheme 3.
Highlights of the synthesis include an efficient two-directional
tandem metathesis that converts the readily available bicyclo[2.2.2]-
octene3 into the core of cyanthiwigin U and the minimal use of
protecting groups.
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Figure 3. Possible avenues for the conversion3ab 2.

Supporting Information Available: Spectra and procedures for
the synthesis of compoun@s— 12, 2, 14, 16, and1. This material is
available free of charge via the Internet at http://pubs.acs.org.
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